
P H Y S I C A L R E V I E W L E T T E R S week ending
30 MAY 2003VOLUME 90, NUMBER 21
Critical-Point Symmetry in a Finite System
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At a critical point of a second-order phase transition the intrinsic energy surface is flat and there is no
stable minimum value of the deformation. However, for a finite system, we show that there is an
effective deformation which can describe the dynamics at the critical point. This effective deformation
is determined by minimizing the energy surface after projection onto the appropriate symmetries. We
derive analytic expressions for energies and quadrupole rates which provide good estimates for these
observables at the critical point.
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FIG. 1. An E(5)-like spectrum of states labeled by L�;�.
Shown are the transitions whose B�E2� values are given in
Eq. (9). The E2 rates for other �� � 1 transitions (not shown)
are governed by O(5) symmetry. Specifically, B�E2;L�

1;2 !

2�1;1� for L � 4; 2 are in the ratio 1:1, respectively, B�E2;L�
1;3 !
critical IBM Hamiltonian can replicate numerically the
E(5) CPS and its analytic predictions [3,5–7]. In the

4�1;2� for L � 6; 4; 3 and B�E2;L�
1;3 ! 2�1;2� for L � 4; 3; 0 are in

the ratios 1:10=21:2=7:11=21:5=7:1, respectively.
Dynamical systems such as nuclei can undergo phase
transitions associated with a change of shape of their
equilibrium configuration. It has been recognized re-
cently [1,2] that it is possible to formulate the concept
of a dynamical symmetry (here meaning solvability in
terms of quantum numbers) for systems at the critical
point of such shape phase transitions. The importance of
these critical-point symmetries lies in the fact that they
provide a classification of states and analytic expressions
for observables in regions where the structure changes
most rapidly. For nuclei, two critical-point symmetries,
called E(5) [1] (not the Euclidean group in five dimen-
sions) and X(5) [2], were considered in the geometric
framework of the collective model. This model involves
a Bohr Hamiltonian which describes the dynamics of a
macroscopic quadrupole shape via a differential equation
in the intrinsic quadrupole shape variables � and �. The
E(5) [X(5)] critical-point symmetry (CPS) is applicable
to a second- [first-] order shape phase transition between
spherical and deformed �-unstable [axially symmetric]
nuclei. In the present work we focus on the E(5) CPS for
which an empirical example has been found in 134Ba [3,4]
and possibly in 104Ru [5], 102Pd [6], and 108Pd [7]. To apply
the E(5) CPS to real nuclei one has to take into account
the finite number of nucleons. This can be conveniently
done in the algebraic framework of the interacting boson
model (IBM) [8]. This model describes low-lying quadru-
pole collective states in nuclei in terms of a system of N
monopole (s) and quadrupole (d) bosons representing
valence nucleon pairs. The IBM Hamiltonian relevant
to the critical point of the phase transition between
spherical and �-unstable deformed nuclei preserves the
O(5) symmetry [9]. Its energy surface, obtained by the
method of coherent states [9,10], is � independent and
exhibits a flat-bottomed behavior in � which resembles
the infinite square-well potential used to derive the E(5)
CPS in the geometric approach [1]. Calculations with
finite N values (N � 5 for 134Ba) have found that this
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present work we examine the properties and conditions
that enable features of E(5) CPS to occur in a finite
system. For that purpose we propose wave functions of
a particular analytic form, which can simulate accurately
the exact IBM eigenstates at the critical point. These wave
functions with fixed N and good O(5) symmetry are used
to derive accurate estimates for energies and quadrupole
rates at the critical point without invoking large-N ap-
proximations. The proposed wave functions can be ob-
tained by projection from intrinsic states with an
effective � deformation.

In the geometric approach the E(5) eigenfunctions [1]
are proportional to Bessel functions of order �� 3

2 and the
corresponding eigenvalues are proportional to �x�;��2.
Here � is the O(5) quantum number, and x�;� is the �th
root of these Bessel functions. A portion of an E(5)-like
spectrum is shown in Fig. 1. It consists of states, L�

�;�,
arranged in major families labeled by � � 1; 2; . . . and
O(5) � multiplets (� � 0; 1; . . . ) within each family. The
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angular momenta L for each � multiplet are obtained by
the usual O�5� � O�3� reduction [11]. The E(5) CPS leads
to analytic parameter-free predictions for energy ratios
and B�E2� ratios that persist when carried over to a finite-
depth potential [12]. As seen in Table I, the E(5) predicted
values are in between the values expected of a spherical
vibrator [U(5)] and a deformed �-unstable rotor [O(6)].

In the algebraic approach, the U(5)-O(6) transition
region is modeled by the Hamiltonian

H � �n̂nd �
1
4A�d

y 	 dy 
 �sy�2��H:c:�; (1)

where � and A are positive parameters. Here n̂nd is the
d-boson number operator, H.c. stands for Hermitian con-
jugate, and the dot implies a scalar product. In the U(5)
limit (A � 0), the spectrum of H is harmonic, �nd, with
nd � 0; 1; 2; . . . ; N. The eigenstates are classified accord-
ing to the chain U�6� � U�5� � O�5� � O�3� with quan-
tum numbers jN; nd; �; Li (for � � 6 an additional
multiplicity index is required for complete classification).
These states can be organized into sets characterized by
nd � �� 2k. States in the lowest-energy set (k � 0) sat-
isfy P0jN; nd � �; �; Li � 0 with Py

0 � dy 	 dy. Other
sets (k > 0) are generated by jN; nd; �; Li / �Py

0 �
kjN 


2k; nd � �; �; Li. In the O(6) limit (� � 0), the spectrum
is 1

4A�N 
 ���N � �� 4� with � � N;N 
 2; N 

4; . . . ; 0 or 1. The eigenstates are classified according to
the chain U�6� � O�6� � O�5� � O�3� with quantum
numbers jN;�; �; Li. The ground band has � � N and
its members satisfy P1jN;� � N; �; Li � 0 with Py

1 �
�dy 	 dy 
 �sy�2�. The remaining bands with � �
N 
 2k are generated by jN;�; �; Li / �Py

1 �
kjN 


2k;�; �; Li. These results suggest that in between the
U(5) and O(6) limits, we consider a ground band
TABLE I. Excitation energies (normalized to the energy of the
0�1;0� � 1] for the E(5) critical-point symmetry [1], for several N �
finite-N calculations involve the exact diagonalization of the critica
[Eqs. (6) and (9) with y � 0:314], the U(5) limit [�nd], and the O

E(5) Exact � pr
N � 5 N

E�0�1;0� 0 0 0
E�2�1;1� 1 1 1
E�L�

1;2� 2.20 2.195 2
E�L�

1;3� 3.59 3.55 3
E�0�2;0� 3.03 3.68 3

B�E2; 4�1;2 ! 2�1;1� 1.68 1.38 1
B�E2; 6�1;3 ! 4�1;2� 2.21 1.40 1
B�E2; 0�2;0 ! 2�1;1� 0.86 0.51 0
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(� � 1) for the Hamiltonian (1) determined by the con-
dition

Pyj� � 1; y;N; �; Li � 0; Py
y � �dy 	 dy 
 y�sy�2�:

(2)

In the U(5) basis these states are

j� � 1; y;N; �; Li

�
X
nd

1

2
�1� �
1�nd
���nd;�jN; nd; �; Li; (3)

and the nd summation covers the range � � nd � N. The
coefficients �nd;� have the explicit form

�nd;� �
�

�N 
 ��!�2�� 3�!!
�N 
 nd�!�nd 
 ��!!�nd � �� 3�!!

�
1=2

� y�nd
��=2��;�;

���;��
2 �

2�N 
 �� 1�
�2�� 3�!!

y2��3�G���1�
N�1
��y��


1;

G�n�
� �y� � 2y2n�1

X
p

�
�

2p� 1

�
y2p

�2p� 1�!!

�2p� 2n� 1�!!
:

(4)

Members of the first excited band �� � 2� have approxi-
mate wave functions of the form

j� � 2; y;N; �; Li � N �P
y
y j� � 1; y;N 
 2; �; Li;

N � � �2�2N � y2 � 1� � 4�y2 
 1�S�N
2�1;� �
1=2;
(5)

where S�N�1;� is defined in Eq. (7) below.
The states of Eqs. (3) and (5) have fixed N, L, and good

O(5) symmetry �. Henceforth, for reasons to be explained
below, they are referred to as �-projected states. Diagonal
matrix elements of the Hamiltonian (1) in these states,
denoted by E�;� � h�; y;N; �jHj�; y;N; �i, can be evalu-
ated in closed form
E��1;� � ��N 
 S�N�1;� � �
1
4A�1
 y�2S�N�2;� ;

E��2;� � �fN 
 2N 2
��2y

2 � �2N � 7y2 
 1�S�N
2�1;� � 2�y2 
 1�S�N
2�2;� �g

� 1
4A2N

2
�f2�y
 1�

2�y2 
 1�S�N
2�3;� � �y
 1�2�2N � y2 
 8y� 5�S�N
2�2;� � 16�y
 1��N � y�S�N
2�1;�

� 2��2N � y��2N � y� 2� � 1�g:

(6)
first excited state) and B�E2� values [in units of B�E2; 2�1;1 !
5 calculations, and for the experimental data of 134Ba [13]. The
l IBM Hamiltonian (Hcri) [Eq. (12)], �-projected states for Hcri

(6) limit [�A=4��N 
 ���N � �� 4� � B���� 3�].

ojection U(5) O(6) 134Ba
� 5 N � 5 N � 5 exp

0 0 0
1 1 1

.19 2 2.5 2.32

.535 3 4.5 3.66

.71 2 1:5 AB 3.57

.35 1.6 1.27 1.56(18)

.38 1.8 1.22
.43 1.6 0 0.42(12)
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The E�;� are independent of L since H is an O(5) scalar. Their expressions involve the quantities S�N�k;� � h� �
1; y;N; �j�sy�kskj� � 1; y;N; �i which are given by

S�N�1;� � �N 
 �� 1�
G���1�
N
� �y�

G���1�
N
��1�y�

; (7)

where S�N�2;� � S�N�1;� S
�N
1�
1;� and S�N�3;� � S�N�1;� S

�N
1�
1;� S�N
2�1;� . Nondiagonal matrix elements of H between �-projected states in

different � bands, H1;2;� � h� � 2; y;N; �jHj� � 1; y;N; �i, can be evaluated as well:

H1;2;� � 2N ��S
�N�
2;� �

1=2f�y� 1
4A�y
 1���2N � y� 1� � 2�y
 1�S�N
2�1;� �g: (8)

By techniques similar to that employed in the O(6) limit of the IBM [11], explicit expressions of quadrupole rates can be
derived for transitions between the �-projected states. For the relevant IBM quadrupole operator, T�E2� � dys� sy ~dd,

these transitions are subject to the O(5) selection rule�� � �1, and, as explained in the caption of Fig. 1, it is sufficient
to focus on the B�E2� values of the type

B�E2;� � 1; �� 1; L � 2�� 2! � � 1; �; L � 2�� �
��� 1�

�2�� 5��N 
 �� 1�
�S�N�1;� �

2G
���1�
N
��1�y�

G���2�
N
� �y�

�

�
y� �N 
 ��

G���2�
N
�
1�y�

G���1�
N
� �y�

�
2
;

B�E2;� � 2; �; L � 2�! � � 1; �� 1; L � 2�� 2� �
��� 1��4�� 5�
�4�� 1��2�� 5�

4N 2
�y
2�y
 1�2�N 
 ��

G���1�
N
�
1�y�

G���2�
N
� �y�

:

(9)

The states in Eqs. (3) and (5) can be obtained by O(5) projection from the IBM intrinsic states for the ground band

jc;Ni � �N!�
1=2�byc �Nj0i;

byc � �1� �2�
1=2
�
� cos�dy0 � � sin�

1���
2

p �dy2 � dy
2� � sy
� (10)
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FIG. 2. Energy surfaces of the critical IBM Hamiltonian Hcri
(12) with N � 5 and A � 1. (a) Intrinsic energy surface E���,
Eq. (13) (solid line), and its approximation by a square-well
potential (dashed line). (b) O(5) projected energy surface
E��1;��0�y�, Eq. (6). The global minimum is at y � 0:314.
and, respectively, for the � band

j�;Ni � N �P
y
y jc;N 
 2i; (11)

provided y � �2. The expressions in Eqs. (3)–(9) depend
on the, so far, unspecified parameter y. Normally, the
equilibrium value of �, and hence y, is chosen as the
global minimum of the intrinsic energy surface deter-
mined from the expectation value of H in the intrinsic
state (10). This is a standard procedure for a Hamiltonian
describing nuclei with rigid shapes, for which the global
minimum is deep and well localized. However, near the
critical point of the phase transition an alternative pro-
cedure is required.

The IBM Hamiltonian, Hcri, at the critical point of the
U(5)-O(6) phase transition corresponds [9] to a special
choice of parameters in the Hamiltonian of Eq. (1)

Hcri : � � �N 
 1�A: (12)

The intrinsic energy surface of Hcri has the form

E��� � E0 � AN�N 
 1��4�1� �2�
2; (13)

where E0 �
1
4AN�N 
 1� is a constant. The energy surface

E���, shown in Fig. 2(a), has a flat behavior ( � �4) for
small �, an inflection point at � � 1, and approaches a
constant for large �. The global minimum at � � 0 is not
well localized and E��� exhibits considerable instability
in �, resembling a square-well potential for 0 � � � 1.
212501-3
Under such circumstances fluctuations in � are large and
play a significant role in the dynamics. Some of their
effect can be taken into account by introducing into
the intrinsic states of Eqs. (10) and (11) an effective �
212501-3



TABLE II. U(5) decomposition (in %) of the L�
�;� states for N � 5. The calculated values are

obtained from the �-projected states, Eqs. (4) and (5) with y � 0:314. The exact values are
obtained from numerical diagonalization of the critical IBM Hamiltonian Hcri, Eq. (12).

0�1;0 2�1;1 L�
1;2 L�

1;3 0�2;0
nd Calc Exact Calc Exact Calc Exact Calc Exact Calc Exact

0 83.2 83.4 15.8 16.4
1 92.2 90.2
2 16.4 16.2 96.8 95.2 70.9 76.2
3 7.8 9.7 99.1 98.4
4 0.4 0.4 3.2 4.8 13.3 7.4
5 0.0 0.1 0.9 1.6
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deformation. The effective deformation is expected to be
in the range 0< y � �2 < 1, in between the respective
U(5) and O(6) values of �. This will enable a reproduc-
tion of E(5) characteristic signatures which are in be-
tween these limits (see Table I). In contrast to E���, we
see from Fig. 2(b) that the O(5) projected energy surface
E��1;��0�y� of Hcri [Eqs. (6) and (12) with N � 5] does
have a stable minimum at a certain value of y, which we
interpret as an effective � deformation. This procedure,
based on variation after projection, is in the spirit of [14]
in which it is shown that in finite boson systems, a
�-unstable O(6) state can be generated from a rigid tri-
axial intrinsic state with an effective � deformation of
30�. In the present case the � instability is treated exactly
by means of O(5) symmetry, while the � instability is
treated by means of an effective deformation. The appro-
priate value of y can be used to evaluate the band mixing,
 ��y� �

jH1;2;�j
E2;�
E1;�

. A small value of  � will ensure that the
�-projected states of Eqs. (3) and (5) form a good repre-
sentation of the actual eigenstates of Hcri and turn the
expressions of Eqs. (6) and (9) into meaningful estimates
for energies and quadrupole transition rates at the critical
point.

To test the suggested procedure we compare in Table II
the U(5) decomposition of exact eigenstates obtained
from numerical diagonalization of Hcri for N � 5 with
that calculated from the �-projected states with y � 0:314
[the global minimum of E1;0�y�]. As can be seen, the latter
provides a good approximation to the exact eigenstates
(the corresponding band mixing is  � � 0:12%, 3.53%,
4.14%, 3.05% for � � 0; 1; 2; 3). This agreement in the
structure of wave functions is translated also into an
agreement in energies and B�E2� values as shown in
Table I. The results of Tables I and II clearly demonstrate
the ability of the suggested procedure to provide analytic
and accurate estimates to the exact finite-N calculations
of the critical IBM Hamiltonian, which in turn agree
with the experimental data in 134Ba and captures the
essential features of the E(5) critical-point symmetry.

To summarize, in this work we have considered proper-
ties of a critical-point symmetry in a finite system. We
212501-4
have focused on the E(5) critical-point symmetry corre-
sponding to flat-bottomed potentials as encountered in a
second-order phase transition between spherical and de-
formed �-unstable nuclei. We have shown that intrinsic
states with an effective � deformation reproduce the
dynamics of the underlying nonrigid shapes. The effec-
tive deformation can be determined from the global
minimum of the energy surface after projection onto
the appropriate symmetry. In the present case, states of
fixed N and good O(5) symmetry projected from these
intrinsic states provide good analytic estimates to the
exact eigenstates, energies, and quadrupole transition
rates at the critical point.
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